skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Zhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automated interpretation of ultrasound imaging of the heart (echocardiograms) could improve the detection and treatment of aortic stenosis (AS), a deadly heart disease. However, existing deep learning pipelines for assessing AS from echocardiograms have two key limitations. First, most methods rely on limited 2D cineloops, thereby ignoring widely available Spectral Doppler imaging that contains important complementary information about pressure gradients and blood flow abnormalities associated with AS. Second, obtaining labeled data is difficult. There are often far more unlabeled echocardiogram recordings available, but these remain underutilized by existing methods. To overcome these limitations, we introduce Semi-supervised Multimodal Multiple-Instance Learning (SMMIL), a new deep learning framework for automatic interpretation for structural heart diseases like AS. During training, SMMIL can combine a smaller labeled set and an abundant unlabeled set of both 2D and Doppler modalities to improve its classifier. When deployed, SMMIL can combine information from all available images to produce an accurate study-level diagnosis of this life-threatening condition. Experiments demonstrate that SMMIL outperforms recent alternatives, including two medical foundation models. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  2. Automated interpretation of ultrasound imaging of the heart (echocardiograms) could improve the detection and treatment of aortic stenosis (AS), a deadly heart disease. However, existing deep learning pipelines for assessing AS from echocardiograms have two key limitations. First, most methods rely on limited 2D cineloops, thereby ignoring widely available Spectral Doppler imaging that contains important complementary information about pressure gradients and blood flow abnormalities associated with AS. Second, obtaining labeled data is difficult. There are often far more unlabeled echocardiogram recordings available, but these remain underutilized by existing methods. To overcome these limitations, we introduce Semi-supervised Multimodal Multiple-Instance Learning (SMMIL), a new deep learning framework for automatic interpretation for structural heart diseases like AS. During training, SMMIL can combine a smaller labeled set and an abundant unlabeled set of both 2D and Doppler modalities to improve its classifier. When deployed, SMMIL can combine information from all available images to produce an accurate study-level diagnosis of this life-threatening condition. Experiments demonstrate that SMMIL outperforms recent alternatives, including two medical foundation models. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  3. Abstract AimsNeural network classifiers can detect aortic stenosis (AS) using limited cardiac ultrasound images. While networks perform very well using cart-based imaging, they have never been tested or fine-tuned for use with focused cardiac ultrasound (FoCUS) acquisitions obtained on handheld ultrasound devices. Methods and resultsProspective study performed at Tufts Medical Center. All patients ≥65 years of age referred for clinically indicated transthoracic echocardigraphy (TTE) were eligible for inclusion. Parasternal long axis and parasternal short axis imaging was acquired using a commercially available handheld ultrasound device. Our cart-based AS classifier (trained on ∼10 000 images) was tested on FoCUS imaging from 160 patients. The median age was 74 (inter-quartile range 69–80) years, 50% of patients were women. Thirty patients (18.8%) had some degree of AS. The area under the received operator curve (AUROC) of the cart-based model for detecting AS was 0.87 (95% CI 0.75–0.99) on the FoCUS test set. Last-layer fine-tuning on handheld data established a classifier with AUROC of 0.94 (0.91–0.97). AUROC during temporal external validation was 0.97 (95% CI 0.89–1.0). When performance of the fine-tuned AS classifier was modelled on potential screening environments (2 and 10% AS prevalence), the positive predictive value ranged from 0.72 (0.69–0.76) to 0.88 (0.81–0.97) and negative predictive value ranged from 0.94 (0.94–0.94) to 0.99 (0.99–0.99) respectively. ConclusionOur cart-based machine-learning model for AS showed a drop in performance when tested on handheld ultrasound imaging collected by sonographers. Fine-tuning the AS classifier improved performance and demonstrates potential as a novel approach to detecting AS through automated interpretation of handheld imaging. 
    more » « less
  4. null (Ed.)
  5. As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We investigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack? Can we develop an online monitoring framework to give rigorous assurances on the safety of such human-robot interactions? We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring and decision making scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.1s). These techniques are both tested in simulation and integrated on a test vehicle with a complete in-house autonomous stack, demonstrating safe interaction in real-world experiments. 
    more » « less